Research Projects

ASSIST4WORK – Social sustainability in production through age-appropriate and disability-friendly workplace design using assistance systems

Funding Body: UNIBZ
Budget : 98.000 Euro
Duration : 15.01.2019 – 14.01.2022
Partners : Fraunhofer Italia Research, lvh-apa, GWB Genossenschaft Werkstätte Begleitung, Independent Life Cooperativa sociale o.n.l.u.s.
Status : ongoing
Project Description:

In the project, with the support of external partners, a comprehensive analysis will be carried out to identify the needs and requirements of people with disabilities and older workers. In addition to a first literature review, this analysis phase includes direct interviews with users, supervisors and employers, as well as preliminary tests in the lab to gain a better understanding of the problem. In the subsequent concept phase, guidelines for the design of an age-appropriate and disability-friendly work place using assistance systems are derived. Finally a prototype workplace will be developed and implemented in the Smart Mini Factory lab and tests will be conducted with older and disabled people to validate the prototype and its assistance systems for their suitability. In parallel to the aim towards a more socially sustainable production, this project will serve to build competence in the field of assistance systems in production.

Contact:
Dr.-Ing. Dipl.-Wirtsch.-Ing.
Erwin Rauch
e-mail

COCkPiT – Collaborative Construction Process Managements

Funding Body: ERDF 2014-2020
Budget : € 747.700 (€ 503.200 UNIBZ)
Duration : 01.01.2017 - 17.11.2019
Partners : Fraunhofer Italia Research
Status : ongoing
Project Description:

The objectives of the project are to provide: Full support for the collaborative definition of process models, full support for short-term capacity scheduling based on the real-time construction progress and full support for real-time construction progress measurement on-site. The overall outcome of the project will be a framework for collaborative and real-time management of processes in construction, based on Industry 4.0 principles. A software prototype supporting the three activities of modeling, scheduling and monitoring will be implemented as a web application and will be available as a SaaS (Software as a Service).

Contact:
Dr.-Ing.
Patrick Dallasega
e-mail

Connectivity and Collaborative Robotics in the Cyber-Physical Production System of the Smart Mini Factory lab

Funding Body: Smart Mini Factory start-up fund
Duration : 15.10.2018 - 14.10.2021
Status : ongoing
Project Description:

Based on the Smart Mini Factory Laboratory, the research project aims to integrate different cyber-physical elements into a holistic cyber-physical production system. The connectivity and interoperability of the individual elements plays a major role here.

Part of this project for the implementation of connected intelligent CPS elements is also the integration of workstations for collaborative robotics and human-machine interaction. The cognitive abilities of these CPS elements are to be used to make the use of collaborative robots safer and to control them decentralized.

Contact:
Dr.
Rafael Angel Rojas Cordova
e-mail

Cyber-Physical-Systems for a smart and hybrid assembly in the Smart Mini Factory lab

Funding Body: Smart Mini Factory start-up fund
Duration : 15.10.2016 - 14.10.2018
Status : closed
Project Description:

Industry 4.0 is an important element of the Industrial Engineering and Automation (IEA) research area. Based on the Smart Mini Factory Laboratory, the research project aims to investigate possibilities for the implementation of intelligent and hybrid assembly systems using cyber-physical systems and apply them in an experimental case study. Relevant data and information should be transmitted in real time from the physical assembly system (e.g. lightweight robots or collaborating robots) or via intelligent sensors and actuators to programmed control software prototypes. Through the Internet of Things (IoT), this real-world information should be shared by other systems and/or mobile devices.

Contact:
Dr.
Rafael Angel Rojas Cordova
e-mail

E-EDU 4.0 – Engineering Education 4.0

Funding Body: Funded by the European Regional Development Fund and Interreg V-A Italy-Austria 2014-2020
Budget : € 1.140.000 (€ 180.000 UNIBZ)
Duration : 01.05.2018 - 31.10.2020
Partners : Camera di Commercio di Treviso-Belluno, Carinthia University of Applied Sciences, Friuli Innovazione, HTL Höhere Technische Bundeslehranstalt Wolfsberg, t2i - trasferimento tecnologico e innovazione
Status : ongoing
Project Description:

The project aims at the development of aligned and specialized qualification programs. The focus of the qualification program is on design for manufacturing with respect to generative production techniques (e.g. 3D-printing), application of robotics in manufacturing cells, application of innovative ICT-technology in production (e.g. augmented reality and virtual reality), as well as data management and information management. The created qualification network establishes an aligned education format for students as well as a separate extra-occupational training program. For this, the project team in a first step identifies already existing institutions working on engineering education programs related to Industry 4.0 and visualizes them in a map. Afterwards the research team identifies the need of innovative education programs and develops training offers for students as well as local companies.

Contact:
Dr.-Ing. Dipl.-Wirtsch.-Ing.
Erwin Rauch
e-mail

EYE TRACK – Industrial Usability of Eye Tracking for Manufacturing and Design in SMEs

Funding Body: UNIBZ
Budget : € 63.000
Duration : 01.11.2017 - 31.01.2020
Partners : University Modena Reggio Emilia, Fraunhofer Italia Research, lvh-apa, Unternehmerverband Südtirol - Assoimprenditori Alto Adige, Technical Highschool Max Valier Bozen, Planit GmbH, Barbieri electronic OHG
Status : ongoing
Project Description:

Eye tracking systems have been used in various sectors such as product development, neuroscience, clinical research, training and learning, linguistics, biomechanics, ergonomics studies, usability studies and market research for quite some time. So far, there are only a few applications of Eye Tracking in industrial environments witha particular reference to manufacturing and assembly. The aim of this study is to find out how and to which extent eye tracking systems can be used in industry, with a focus on typical South Tyrolean small and medium-sized enterprises. This will occur, for instance, by inspecting assembly workstations before and after workstation optimization using eye tracking systems, in order to achieve both ergonomic advantages and efficiency improvements visible and measurable.

Contact:
Dr.-Ing. Dipl.-Wirtsch.-Ing.
Erwin Rauch
e-mail

GRASPS – Grasping And Soft-bodies Picking Systems

Funding Body: UNIBZ
Budget : € 35.000
Duration : 01.12.2014 - 30.11.2017
Status : completed
Project Description:

This applied research project covered the study and development of effective grasping systems in particular for soft- and/or fragile- bodies for future human-robot-interaction applications – thus for the industrial, agricultural, food-production and medical areas – by focusing on three main topics: non-contact sensing techniques, prehension and handling of soft- or fragile- objects, and effective motion planning. Test-case scenarios have been defined, designed and tested for showing the feasibility and applicability of the developed ideas.

Contact:
Prof. Dr.
Renato Vidoni
e-mail

High performance electrical drives for automated production system

Funding Body: Smart Mini Factory start-up fund
Duration : 01.02.2017 - 31.01.2019
Status : ongoing
Project Description:

A research topic in the Smart Mini-Factory Lab is about high performance electrical drives for high automation industrial systems. Electrical drives have, indeed, a central role in automation systems. The project aim to study and develop electrical drives and related components capable of high efficiency and high dynamic performance. The activities will cover: computer simulations (in particular with Finite Element method) as long as experimental test in laboratory on a dedicated test bench to validate the predictions.

Contact:
Dr.
Omar Bottesi
e-mail

Parametric-Design Strategies for Digital Manufacturing in Mass Customization and x-to-order environment

Funding Body: Smart Mini Factory start-up fund
Duration : 01.03.2017 - 28.02.2019
Status : ongoing
Project Description:

The research activity focuses on studying parametric design and engineering techniques of products, in order to drive the digitalization processes of small-medium enterprises within the “Industry 4.0” context. The research activity aims at defining specific approaches for a smart automation of products’ design and engineering processes within the Smart Mini Factory lab. These approaches should be defined by connecting machine-driven and hybrid production systems, enhancing Mass customization capabilities thanks to the adoption of Cyber-Physical-Systems among production lines. The project has to define prototypes of parametric algorithms for design and engineering of products, referring to one or more case-studies and exchanging input-output data with machine-driven and hybrid production systems within different x-to-order contexts.

Contact:
Arch. Ph.D. M.Sc.
Gabriele Pasetti Monizza
e-mail

SMART SHOPFLOOR – Development of a software prototype for intelligent Shop Floor Management through Industry 4.0 technologies

Funding Body: UNIBZ
Budget : € 70.000
Duration : 01.01.2017 - 31.12.2019
Partners : Anyt1me GmbH, Solunio GmbH
Status : ongoing
Project Description:

In the last decade, the Shop-Floor Management was mainly optimized by methods from Lean Production achieving significant savings and productivity gains. With the technological opportunities of Industry 4.0 the Shop-Floor Management should be become mobile, digitally visualized and even more smart and intelligent at the same time. All data of decentralized production plants are processed in real time and provide the needed information for the operative production management. This allows companies to compare these data with each other, to put them in correlation, to analyze them and to take decisions faster. This research project contributes to realize the vision of a Smart Factory by identifying the needs and enablers for a smart and intelligent Shop-Floor-Management, developing concrete concepts and design solutions for such systems and creating a prototype of a digital software application for its use and commercialization in an industrial environment.

Contact:
Dott.
Manuel A. Ruiz Garcia
e-mail

SME 4.0 – Industry 4.0 for SMEs

Funding Body: EU H2020 MSCA RISE
Budget : € 783.000 (€ 311.500 UNIBZ)
Duration : 01.01.2017 - 31.12.2020
Partners : Montanuniversität Leoben, Technical University of Kosice, Elcom sro, Massachusetts Institute of Technology (MIT), Worcester Polytechnic Institute (WPI), Chiang Mai University, SACS MAVMM Engineering College
Status : ongoing
Project Description:

Industry 4.0 refers to the fourth industrial revolution. A great challenge for the future lies in the transfer of Industry 4.0 expertise and technologies in small and medium sized enterprises (SME). SMEs represent the backbone of the economy and have an enormous importance in the development programs of the European Union for strengthening the competitiveness of European enterprises. Although the high potential of Industry 4.0 in SMEs, the main limit lies in a lack of concrete models for its implementation and application in small and medium enterprises. Thus, this research project titled “Industry 4.0 for SMEs – Smart Manufacturing and Logistics for SMEs in an X-to-order and Mass Customization Environment” aims to close this gap through the creation of an international and interdisciplinary research network. Identifying the needs and enablers for a smart and intelligent SME-Factory, creating adapted concepts and design solutions for SME production and logistics systems and developing suitable organisation and business models will be the main objectives of this research network.

Contact:
Dr.-Ing. Dipl.-Wirtsch.-Ing.
Erwin Rauch
e-mail